

Daily Tutorial Sheet-10	Level-2

116.(B) For a reaction to be spontaneous ΔG must be negative. According to relationship of ΔG ,

$$\Delta G = \Delta H - T \cdot \Delta S$$

If ΔH and ΔS both are positive, then term T. ΔS will be greater than ΔH at high temperature and consequently ΔG will be negative at high temperature. (Boiling point of water) and reaction becomes feasible.

117.(B) Entropy of vapour is higher than liquid higher than solid.

118.(C) $\Delta G = \Delta H - T \Delta S$

If $\Delta G = -ve$ \Rightarrow reaction is spontaneous $\Delta H > 0$ and $\Delta S > 0$

It implies that entropy term can make ΔG negative which is possible at higher temperature.

119.(A)
$$\Delta G = \Delta H^{\circ} - T\Delta S^{\circ} = \left(179.1 - \frac{298 \times 160.2}{1000}\right) \text{kJ / mol} = 179.1 - 47.74 = 131.36 \text{ kJ} = + \text{ ve}$$

⇒ non-spontaneous at 298K.

Let at T, reaction is spontaneous.

$$\Delta G \leq 0 \quad \Rightarrow \quad \Delta H - T \Delta S \leq 0$$

$$\Delta H \quad 179.1 \times 1000 \ _$$

$$T \geq \frac{\Delta H}{\Delta S} = \frac{179.1 {\times} 1000}{160.2} \, K$$

 $T \ge 1118 \, K$

120.(D)
$$\frac{1}{2}X_2 + \frac{3}{2}Y_2 \iff XY_3$$

$$\Delta S = 50 - \left(\frac{1}{2} \times 60 + \frac{3}{2} \times 40\right) = 50 - 90 = -40 \text{ kJ / mol}$$

$$\Delta G = 0 = -30 \times 10^3 - T \times (-40)$$

$$40T = 30 \times 10^3 \quad \Rightarrow \quad T = 750 \text{ K}$$

121.(C) $\Delta G = \Delta G^{\circ} + RT \ell nQ$

At equilibrium $\Delta G=0$ and $\Delta G^{\circ}=\Delta H-T\,\Delta S^{\circ}$ and Q=K

$$\ell n K = -\frac{\Delta H^\circ - T \, \Delta S^\circ}{RT}$$

122.(D) $\Delta S = -ve$

$$\Delta H = -ve$$

$$\Delta G = \Delta H - T\Delta S$$

For a reaction to be spontaneous; $\Delta G = -ve$ which can be below a certain temperature only

123.(B)
$$\Delta G = \Delta H - T\Delta S = -2808 - 310 \times 182.4 \times 10^{-3} = -2864.5 \text{ kJ}$$

124.(A) Since, expansion occurred at constant temperature,

$$\Delta S = nR \ ln \frac{V_2}{V_1} = \frac{1}{32} \times 8.314 \ ln \ \frac{3.0}{0.75} = 0.36 \ JK^{-1}$$

Since, this is case of free expansion, $P_{ext} = 0 \implies -W = P_{ext}\Delta V = 0$, q = 0

Also, since, $\Delta T = 0 \implies \Delta H = \Delta E = 0$.

125.(B)
$$Cu_2O(s) + \frac{1}{2}O_2(g) \rightleftharpoons 2CuO(s)$$

$$\Delta G_{reaction}^{\circ} = [2 \times (-30.4)] - (-34.98) = -25.82 \text{ kcal}$$
 and $-25.82 \times 10^3 = -2.303 \times 2 \times 298 \log K$

 $\therefore \quad K \approx 10^{19}, \text{a very high value, hence reaction will be almost complete with a trace of } \ \text{Cu}_2\text{O} \,.$

VMC | Chemistry 53 Thermodynamics